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We consider models of financial markets in which all parties involved find incentives to participate. Strat-
egies are evaluated directly by their virtual wealth. By tuning the price sensitivity and market impact, a phase
diagram with several attractor behaviors resembling those of real markets emerge, reflecting the roles played
by the arbitrageurs and trendsetters, and including a phase with irregular price trends and positive sums. The
positive sumness of the players’ wealth provides participation incentives for them. Evolution and the bid-ask
spread provide mechanisms for the gain in wealth of both the players and market makers. New players survive
in the market if the evolutionary rate is sufficiently slow. We test the applicability of the model on real Hang
Seng Index data over 20 years. Comparisons with other models show that our model has a superior average
performance when applied to real financial data.
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I. INTRODUCTION

The potential of using agent-based models to analyze and
elucidate the behavior of financial markets has been gradu-
ally realized in the physics community in recent years �1�.
These models are able to relate the attributes of the indi-
vidual players, such as their memory sizes and payoffs, to the
collective behavior of the system, such as the information
content, volatility, and phase transitions �2–5�. The key in-
sight of a family of these models, known as the minority
games, is the observation that the players making the minor-
ity decisions take advantage of their counterparts during
trading, and the adaptive behavior towards this target results
in the nontrivial behavior of the financial markets.

However, the original minority game does not provide a
correct perspective to model financial markets, in which
players participate only when they see chances of getting
profits. Since the winners in the games belong to the minor-
ity group at each time step, they become negative-sum
games. Consequently, were the players given the option to
withdraw from the market, their participation would not be
sustained.

Variations of the original version of the game provided
partial solutions to the issue. For example, the influence of
wealth in the decisions of the agents was considered �6–8�.
In these models, the buying power of an agent is curtailed
when she does not have enough wealth. This creates a natu-
ral mechanism to expel the poor agents from the market,
although the issue of participation incentives was not the
focus of those studies.

Another mechanism for the agents to change their status
of participation was considered in the so-called grand-
canonical minority game �6–9�. The speculators have the op-
tion to participate or withdraw from the market according to
their perception of profitability. However, the wealth gained
by the so-called producers, whose predictable strategies
made them the prey of arbitrage by the speculators, is at best
zero. Thus, the issue merely shifts from the speculators to the
producers: were the producers given the option to withdraw
from the market, their participation would not be sustained.

The $-game considered whether the market makers can be
prevented from being arbitraged by the players �5�. It was
found that the market makers are able to arbitrage the players
when the strategies of the players are too complex, but are
arbitraged by the players otherwise. The issue of voluntary
participation remains: either the market makers or the play-
ers are tempted to withdraw from the game, given the option.

The agent-based models are remote from realistic finan-
cial markets in another aspect. More often, agents in real
markets evaluate their strategies in real financial terms,
namely, how much wealth the strategies would have brought
them in the market history, had the players adopted them. In
contrast, players in the agent-based models use various ways
to update the virtual points or scores of their strategies when
they make transactions. Typical virtual point updating rules,
such as those in the original minority game �2�, evaluate the
buying and selling decisions at a time step, regardless of the
need to update the historical effects of the previous deci-
sions. In other models, one-step expectations of the players
are considered, leading to the $-game �5�, and markets with a
mixture of majority and minority game players �10�. How-
ever, these models of myopic players may not reflect the
history-dependent considerations of real market players.

An example is the evaluation of holding a position �that
is, a decision of taking no buying or selling actions�. In real
markets, players need the option to hold a position, either by
actively including it as a decision prescribed by their strate-
gies, or by passively refraining from buying and selling de-
cisions, consequential to their reaching maximum or mini-
mum positions, respectively. Virtual point updates in most
agent-based models are neutral to holding positions.

To incorporate the option of holding a position, the most
common method used in the grand-canonical models is to
monitor whether the virtual points passively fall below a
certain threshold �4,9�. Now if holding a position is part of a
player’s option, the benefits of taking such a position should
be reflected in the payoff functions, so that the players can
choose to hold long �short� positions when prices are rising
�falling�. These considerations are best reflected in monitor-
ing the wealth associated with the strategy decisions. We
therefore focus on wealth-based strategies in this paper.

PHYSICAL REVIEW E 77, 026107 �2008�

1539-3755/2008/77�2�/026107�15� ©2008 The American Physical Society026107-1

http://dx.doi.org/10.1103/PhysRevE.77.026107


Wealth-based strategies were previously considered in exo-
genous markets �11�. As will be shown, agents with wealth-
based strategies in endogenous markets can self-organize to
exhibit even more interesting coordinated behaviors.

In this paper, we consider models of financial markets in
which all parties involved find incentives to participate. Our
models incorporate several realistic features recently added
to the minority game, including wealth-based strategies and
the opening and closing of an agent’s position during trading
�11,12�, but the focus will be the issue of participation incen-
tives, attractor behavior, and tests with real data. As will be
shown, the players are able to arbitrage the market makers in
the absence of the spread in the bid and ask prices, provided
that the market impact or the price sensitivity to the excess
demand is sufficiently low. On the other hand, in an evolving
market, underperforming players leave the market and new
players bring their wealth into the market, rendering it a
positive-sum game. The market makers share the wealth by
imposing spreads in the bid-ask prices. To complete the pic-
ture, we find that it is possible for the new players to have
incentives to participate if the evolutionary rate is suffi-
ciently slow. Compared with previous models, our models
are relatively simple in terms of the number of parameters,
and may be eventually amenable to analytical approaches
similar to those which have proved successful in the study of
the minority game �13–15�.

The paper is organized as follows. After introducing the
model in Sec. II, we describe in Sec. III the different attractor
behaviors resembling those in real markets and map the posi-
tive sumness of the players in the absence evolution and the
bid-ask spread. In Sec. IV we consider the effects of the
bid-ask spread imposed by the market makers. In Sec. V, we
complete the picture by considering the conditions under
which the new players in an evolving market are able to
enhance their survival. In Sec. VI, we test the applicability of
wealth-based strategies on real Hang Seng index data, fol-
lowed by a conclusion in Sec. VII.

II. MODEL

We consider a model of the financial market in which N
agents trade. Although we are interested in financial markets
in general �stocks, foreign exchange, etc.�, we will use the
language of stock markets for the sake of convenience. At
each time step the agents make trading decisions +1, −1, or
0, which represent buying or selling a unit of stock, or taking
a holding position, respectively. Denoting the decision of
agent i at time t by ai�t�, the position ki�t� of agent i at time
t is given by

ki�t� = �
t��t

ai�t�� . �1�

Positive and negative ki�t� refer to a long and short position,
respectively.

Introducing the positions of the agents provides a simple
way to model the effects of the limited wealth of the agents
in real markets. In previous models, the amount of stocks
bought �sold� by an agent following each decision is a frac-
tion of her capital �stock� �6,7�. Here, to decorporate the

limitations of wealth in the presence of both long and short
positions, we define a maximum position K by imposing the
constraint, i.e., �ki�t� � �K. Once the maximum position is
reached, decisions which further increase the magnitude of
the positions are ignored. A consequence of this model of
trading behavior is that wealth accumulation is additive, in
contrast to other models in which wealth accumulation is
multiplicative �6,7�.

The stock price should evolve according to their demand
and supply. Thus, the price of one unit of stock is updated by

P�t + 1� = P�t� + sgn�A�t���A�t���, �2�

where A�t���iai�t� represents the excess demand. When
there are more �less� buyers than sellers, A�t� is positive
�negative� driving the price up �down� according to Eq. �2�.
The exponent � describes the sensitivity of price increment to
the excess demand, �=0 and 1 for the cases of step �2–4�
and linear functions �9�, respectively, which was extensively
studied in the literature. On the other hand, there is evidence
for ��0.5 �16�.

In market clearing processes, there is usually a discrep-
ancy between the price expected by an agent when she sub-
mitted her bid and the actual transaction price �11�. This
discrepancy arises from the sequential process of clearing the
deals at each time step, during which the transaction price
changes from its present value to the new value according to
Eq. �2�. For simplicity, we assume that the transaction price
is the same for all transactions at time t. Thus, we approxi-
mate the transaction price PT as

PT�t� = �1 − ��P�t� + �P�t + 1� , �3�

with 0���1. The variable � acts as a market impact factor,
since it arises from the collective effects of agent participa-
tion, and reduces the profit of the majority of the participat-
ing agents relative to the so-called price takers. When �=1,
agents experience full market impact in transactions and are
trading with the next price. When �=0, agents experience no
market impact in transactions and are trading with the imme-
diate price.

With this evolving transaction price, we let wi�t� be the
wealth of agent i at time t just after the decision ai�t� is
carried out and the transaction is completed. The wealth wi�t�
is the sum of cash ci�t� and stock values in hand, namely,

wi�t� = ci�t� + ki�t�PT�t� , �4�

with ki�t� given by Eq. �1�. The second term of Eq. �4� cor-
responds to the stock values in hand, which is the product of
the position held and the current transaction price. PT�t� in-
stead of P�t� is employed in calculating wealth, since it rep-
resents the actual stock value once decisions are imple-
mented. Cash is updated according to the buying and selling
of stocks at time t, namely,

ci�t� = ci�t − 1� − ai�t�PT�t� . �5�

Suppose agent i buys �sells� a unit of stock at time t. Her
cash is lowered �raised� by an amount PT�t� while her value
of stocks in hand is increased by the same amount, so that
any change in wealth is due to the change in value of the
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stocks she previously held. After rearranging Eqs. �2�–�4�,
the wealth change of agent i after transactions at time t can
be expressed as

wi�t� − wi�t − 1� = ki�t − 1��PT�t� − PT�t − 1�� . �6�

Next, we consider the strategies used by the agents to
reach their decisions in the evolving market environment. In
this paper we will consider endogenous environments. In this
case, the market environment at time t is described by ��t�,
which is one of the 2m strings of the m most recent outcomes
of the sign of price changes. Thus, m is called the memory
size.

A strategy prescribes the decisions +1, 0, −1 in response
to each of the 2m states of the market environment. Each
agent draws s strategies randomly at the beginning of the
game. Every strategy should have at least one buying and
selling decision. At every time step, each agent selects the
most successful strategy among the s strategies she owns and
uses it to make a decision. The success of a strategy is mea-
sured by the virtual wealth it should have acquired were its
decisions followed in the market history. This means that for
strategy �, we start with the initial virtual wealth w��0�=0
and update their values in the same way as we do for real
wealth, that is,

k��t� = max	− K,min�K,k��t − 1� + a��t��
 , �7�

w��t� = w��t − 1� + k��t − 1��PT − PT�t − 1�� , �8�

where PT is the transaction price determined from the real
transactions in Eq. �3�. In this way, the virtual wealths of the
strategies are calculated as if they were the price takers.

A common way to model the incentives of the agents to
participate in the market or otherwise is to allow one of their
s strategies to be a zero strategy, such as that adopted in the
grand-canonical minority game �6–9�. The zero strategy re-
fers to one with a holding decision irrespective of the market
environment. Indeed, this feature can be incorporated into
our model. However, as we shall see, the basic behavior
remains the same. Hence, unless mentioned explicitly, the
zero strategy will not be included in our model.

Unlike the original minority game �2�, an agent in this
model can hold a long or short position while at the same
time the virtual positions of the adopted strategy are updated
independently. The use of virtual wealths in evaluating strat-
egies is an essential difference with the conventional models
of the minority game, which will be discussed in detail in
Sec. VI. The ways of wealth accounting in the current market
model and the minority game are summarized in Table 1 in
Sec. VI. In the present model, the increment of real wealth as
well as the virtual wealths of strategies at each step depends
on the historical sum of actions according to Eqs. �1� and �6�,
and Eqs. �7� and �8� respectively, which implicitly embed a
longer memory scale in wealth monitoring and strategy se-
lection than the original minority game. This long memory in
wealth monitoring introduces a great complexity in the dy-
namics of system, which brings in a rich behavior reflecting
aspects of real markets.

III. PHASE DIAGRAM

In the phase space of price sensitivity � and market im-
pact �, we found the phases shown in Fig. 1. Examples of
the time series of price and the corresponding average wealth
are shown, respectively, in Figs. 2 and 3. It can be seen that
the system behaves very differently in the arbitrageurs’, the
trendsetters’, and the irregular phases. We will discuss these
behaviors in detail in the following subsections.

A. Arbitrageurs’ attractor

In the region with ��0.5 and sufficiently large �, the
system eventually falls into periodic attractors with agents
buying and selling according to the self-generated price
change in a recursive manner. In most cases, the system gets
attracted to a period-two cycle in which the same groups of
agents synchronize into buying and selling at consecutive
time steps, which drives the price oscillating between a
higher and lower value accordingly, as shown in Fig. 2�a�.
Suppose the prices in the period-two cycle are P0 and P0
+ �A0��. Then the transaction prices become P0+� �A0�� and
P0+ �1−�� �A0��. With ��0.5, agents engaged in this cycle
gain �1−2�� �A0�� per cycle by buying at a lower price and
selling immediately at a higher price. These agents can be
called the arbitrageurs. The attractor is robust since the net
gain in wealth of the arbitrageurs reinforces their use of the
so-called smart strategies when the market dynamics is
dominated by the buy-sell cycles �17�. The anti-arbitrageurs,
who sell at a lower price and buy immediately at a higher
price, lose �1−2�� �A0�� per cycle. Since the virtual wealths
of their strategies are much lower, they are outnumbered by

FIG. 1. The phase diagram showing the phases of the trendset-
ters’ attractor, the arbitrageurs’ attractor, the mixture phase, and the
irregular phase for m=3, s=2, K=3, N=1000, 106 steps, and 100
samples. Thick solid �dashed� line: transition discontinuous �con-
tinuous� in predictability and volatility. Thin solid �dashed� line:
contours of the probability of the trendsetters’ �arbitrageurs’�
attractor.
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the arbitrageurs. Other agents adopt strategies which have an
unequal number of buy and sell decisions in a period-two
cycle, and their maximum or minimum positions prevent
them from participating in the market.

The behaviors of the arbitrageurs are reminiscent of those
of the privileged traders in real financial markets. They place
their buying �selling� bids in the market, stimulating price
rises �drops�. The regime of low market impact corresponds
to the dominance of these traders, who have the privilege to
have their bids cleared earlier than the other traders, and
hence enjoy a more favorable price before the price moves
significantly. At the next step, they place an opposite bid in
the market, stimulating a price change in the reverse direc-
tion, and recovering their cash �stocks� with a profit margin.

As shown in Fig. 3�a�, the average wealth of the agents
increases linearly with time. When �=0.5, the agents buy
and sell at the same price in the cycle, resulting in zero
change in their average wealth after the transients have sub-
sided, as shown in Fig. 3�d�.

A phase transition takes place at �=0.5, since in the re-
gime of large market impact with ��0.5, agents engaged in
similar buy and sell cycles are eventually losing as they are
buying at a higher price and selling at a lower price. As
shown in Fig. 4�a�, the average wealth gain of the agents
changes from positive to negative at �=0.5 for �=0.5 and
K=1. The change is accompanied by a change in the slope,
indicating that a continuous phase transition is taking place,
and can be attributed to the disappearance of the arbi-
trageurs’ attractor at �=0.5.

Furthermore, we monitor the predictability H �18� and the
volatility � �3�. The former is defined as

H = �
�

	����
P���2, �9�

where �
P ��� is the average of the price change conditional
on state �, and 	��� is the probability of occurrence of state
�. The volatility � of price changes is defined as
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FIG. 2. �Color online� The time dependence of price for three samples with m=3, s=2, K=1, N=1000 for �a� the arbitrageurs’ phase at
�� ,��= �0.8,0.4�, �b� the trendsetters’ phase at �� ,��= �0.2,0.8�, �c� the irregular phase at �� ,��= �0.8,0.8�, and �d� the phase boundary at
�� ,��= �0.8,0.5�.
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FIG. 3. �Color online� The time dependence of the average
wealth for the corresponding samples in Fig. 2.
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� = �
P2� − �
P�2. �10�

Since the dynamics of the arbitrageurs’ attractor is embedded
in a low dimensional space, we expect that the excess de-
mand A scales as N in this regime �19,20�. Consequently, we
expect that H and � scales as N2� and N�, respectively. As
shown in Figs. 4�b� and 4�c�, the predictability vanishes and
the volatility is greatly reduced for � above 0.5, supporting
the pictures of a phase transition.

B. Trendsetters’ attractor

1. Dynamics

The phase space is dominated by the trendsetters’ attrac-
tor for sufficiently low �. It is quasiperiodic, an example
being shown in Fig. 5. A trendsetter strategy of memory size
m consists of a buying decision responding to a signal with
m consecutive instants of rising price, and a selling decision
responding to a signal with m consecutive instants of drop-
ping price. The trendsetters’ attractor phase is increasingly
prominent when the maximum position K increases. For a
large K, the agents are allowed to hold multiple short or long
positions in hand. This increased freedom allows them to
gain by holding a long �short� position when the price is
rising �dropping�. As shown in Fig. 5�a�, this strategy enables
one to gain at all time steps in a market dominated by the
trendsetters’ attractor, except near the points where a rising
trend switches to a dropping one, or vice versa. Conse-
quently, the trendsetter strategy is the most successful strat-
egy in a trendsetters’ attractor, and the agents holding at least
one trendsetter strategy will make decisions accordingly.
These agents are referred to as the trendsetters.

The dynamics of the attractor consists of four stages:
�1� In the first stage, the trendsetters make buying deci-

sions collectively. Starting from short positions, they accu-
mulate stocks step by step and switch from minimum to
maximum positions in 2K steps. At the end of this stage, the
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FIG. 4. The dependence on � of �a� the average wealth gain per
step, �b� the predictability, and �c� the volatility, for �=0.5 and K
=1. Simulations are performed with N=100, 300, 1000, 105 steps,
and 1000 samples.

5000 5050 5100 5150

-120

-100

-80

-60

P
(t

)

5000 5050 5100 5150
-4
-3
-2
-1
0
1
2
3
4

k
i
(t

)

5000 5050 5100 5150
t

-15

-10

-5

0

5

10

∆w
i(t

)

A B C D

FIG. 5. An example of the trendsetters’ attrac-
tor showing �a� the price, �b� the position of a
typical trendsetter, and �c� the wealth of a typical
trendsetter. The first to fourth stages start at
points A, B, C, D respectively. Parameters are
m=3, s=2, K=3, �=0.3, �=0.8, and N=1000.
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positions of the trendsetters reach the maximum, and they
are restrained from further buying actions.

�2� In the second stage, another group of agents takes up
the role of collective buying and pushes the price further up.
This group consists of the fickle agents, who fickle their de-
cisions between two strategies. Through the adaptive process
of trading, the virtual wealths of the two strategies adjust to
such levels that the selling decisions of a strategy are favored
in the first stage, and the buying decisions of another strategy
are adopted in the second stage. This causes the fickle agents
to take buying actions in the second stage, pushing the price
further up. At the end of this stage, the positions of the fickle
agents reach the maximum, and they are restrained from fur-
ther buying actions. The market will then remain quiet with
no price movement, waiting for a random signal to drive the
next stage.

�3� The third stage is triggered by a randomly generated
selling signal, and the trendsetters respond by collective sell-
ing decisions. Starting from long positions, they cash in
stocks step by step and switch from maximum to minimum
positions in 2K steps. At the end of this stage, the positions
of the trendsetters reach the minimum, and they are re-
strained from further selling actions.

�4� In the fourth stage, the fickle agents switch their strat-
egies to selling, since the falling price in the third stage re-
duces the virtual wealth of the buying strategies and boosts
that of the selling strategies. At the end of this stage, the
positions of the fickle agents reach the minimum, and they
are restrained from further selling actions. The market will
then remain quiet with no price movement, waiting for a
random signal to drive another cycle.

2. Stability

The stability of the attractor depends on whether the
trendsetters are able to increase their wealth in a cycle. Con-
sider the case of m=2, for example. The fast trendsetters
respond to the signals of drop-rise and rise-drop with buying
and selling decisions, respectively. They detect the change in
the trend at the earliest possible instant and become the first
group of trendsetters to benefit in the first and third stages.

On the other hand, the slowest trendsetters respond to the
signals of drop-rise and rise-drop with selling and buying
decisions, respectively. They only join the other trendsetters
m−1 steps after the onset of a trend. Hence, they lose wealth
due to their failure to respond timely to the changing trend in
the first and third stages.

However, since the fickle agents push the price further up
and down in the second and fourth stages, respectively, the
slowest trendsetters have the opportunity to regain their
wealth through holding long and short positions, respec-
tively. So in other words, if the price change caused by the
fickle agents is sufficient to ensure the slowest trendsetters to
gain wealth in a cycle, the trendsetters’ attractor will become
stable.

The stability is achievable when the price sensitivity � is
sufficiently low. Low values of � imply that the return in a
step is rather insensitive to the excess demand. Since the
virtual wealth of the strategies held by the fickle agents is
lower than that of the trendsetters, the population size of the

fickle agents is less than that of the trendsetters. Hence, if the
return is insensitive to the excess demand, the price change
caused by the fickle agents in the second and fourth stages
will not be too much less than those caused by the trendset-
ters in the first and third stages. The slowest trendsetters will
then be able to regain their wealth. Consequently, the
trendsetter’s attractor is only stable for sufficiently low val-
ues of �.

While the analysis for the general case is not available so
far, we have considered the simple case of m=2, which cap-
tures the essentials of the agent dynamics. In this case, the
number of kinds of agents is few enough for a systematic
analysis. By carefully tracing the decisions of the different
types of agents in this essential model, one can deduce the
price change and the wealth gained by the different types of
agents in the attractor, and hence the stability condition of
the trendsetters’ attractor. Since the analysis is lengthy, de-
tails will not be presented here. Nevertheless, we mention
that the resultant condition, in the form ���trendsetter���, has
a remarkable agreement with the simulation results.

It is interesting to consider the stability of the trendsetter
attractor in the grand-canonical version of our model market,
since it depends on the fickle agents who continue to lose
wealth to the trendsetters. Consider the grand-canonical mar-
ket in which each agent has an extra zero strategy, which
receives a payoff of � at every time step and whose decisions
are zero irrespective of the environment; � is the interest rate.
This allows the agents to refrain from playing, if their other
strategies do not grant them a positive return. Since the fickle
agents in the trendsetter attractor lose wealth, one might ex-
pect that they will withdraw from the market, destabilizing
the attractor.

Surprisingly, we find that the trendsetter attractor contin-
ues to exist in the grand-canonical market. We monitor the
strategies of the fickle agents, and find that their strategies
are in fact winning strategies averaged over time. Hence, the
fickle agents do not use the zero strategy. However, they
switch between the good strategies in an untimely manner,
causing them to lose wealth even though their strategies are
gaining when averaged over time.

Furthermore, we note that the market behavior is rather
sensitive to the interest rate in the original version of the
minority game. For example, the predictability drops signifi-
cantly when the interest rate changes from 0 to a small posi-
tive value �21�. In our model, the market behavior in the
grand-canonical setting is effectively the same as that in the
canonical one when the interest rate is around 0, as indicated
by the wealth gain per step, predictability, and volatility.
Even at an interest rate as high as 0.1, the trendsetter attrac-
tors continue to exist, although the wealth gain per step,
predictability, and volatility of the market are gradually re-
duced in the negative-sum regime. The insensitivity to the
interest rate in our model is probably due to the use of
wealth-based payoff schemes, and the trendsetters’ phase is
in the regime of positive sum.

3. Dependence on �

Figure 6 shows the average wealth gain per step, the pre-
dictability, and the volatility when � increases across the
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phase boundary separating the phases of the trendsetters’ and
irregular attractors. There appears a change in the slope of
the wealth gain per step in Fig. 6�a� when the phase bound-
ary is crossed, but no discontinuities seem to appear in the
predictability and volatility in Figs. 6�b� and 6�c�. This indi-
cates that the phase transition of the trendsetters’ attractor is
milder than that of the arbitrageurs’ attractors.

Another interesting feature of the trendsetters’ attractor is
that the price does not return to the same value after one
period. This contributes to a constant growth or decay rate
after averaging over many periods. We have also studied the
sample-averaged growth rate of the price, and found that it
also scales as N�. After rescaling by N�, the dependence of
the growth rate of the price is qualitatively similar to those in
Figs. 6�a�–6�c�.

In the region where both the trendsetters’ and the arbi-
trageurs’ attractors are stable, we have a mixture phase. The
type of attractor reached in the steady state depends on the
sample. In this mixture phase, some trendsetters’ attractors
are quasistable in the transients, and eventually settle as ar-
bitrageurs’ attractors in the steady state.

4. Relation to other models

The behavior of the trendsetters’ attractor is very similar
to the bubbles and crashes found in �6�. There, the trendset-
ters first create a rising trend, which subsequently flattens
because of their limited buying power. Then, the so-called
fundamentalists act contrarily to the main trend, triggering
the crash. It is inspiring to note the universality of behavior
in these two models, despite the different ways of introduc-
ing the relevant parameters. In our model, the trendsetters’
attractor exists only when the price sensitivity � is suffi-
ciently low, so that the trendsetters and their followers are
able to gain wealth at the end of the rising �dropping� trend
by having long �short� positions. On the other hand, the
crashes and bubbles in �6� are sustainable only when the
fraction of investment per agent per step is sufficiently small.
We note that both the price sensitivity in our model and the
investment fraction in �6� play the role of transducing the
excess demand to price movement.

Moreover, both models contain mechanisms for trend re-
versal. In �6�, trend reversals are triggered by the fundamen-
talists, whereas in our model trend reversals at the end of
rising or dropping trends become unavoidable since the po-
sitions of the agents have reached their maximum or mini-
mum.

On the other hand, our model differs from that of �6� in
having fewer parameters, having the market makers, and
having no reference return. The robustness of the trendset-
ters’ attractor despite these differences shows that it is a
ubiquitous phenomenon in certain parameter ranges. As a
further step, we have described the role played by the differ-
ent types of agents in the self-organization of these attractors.

The behaviors of the agents in the trendsetters’ attractor
resemble those in real financial markets. The trendsetters re-
spond to a bullish signal and take buying actions collectively,
creating a bullish market. They stop buying due to their finite
capital or assessment of risks, followed by the fickle agents
who try to catch up. Eventually the market becomes quiet
when all agents have exhausted their capital or tolerance to
risks. Then a bearish signal appears and the trendsetters sell
their stocks, followed by the fickle agents.

C. Irregular phase

In the phase diagram of Fig. 1, there is an irregular phase
in which the periodic and quasiperiodic attractors cannot per-
sist. The trendsetters’ attractor appears only intermittently,
since they are not stable in the long run. Other intermittent
states are observed. Abrupt and sudden changes are found
connecting the intermittent states.

For ��1, long term price fluctuations embody fluctua-
tions in shorter time scales. An example is shown in Fig.
7�a�. The trendsetters’ attractors appear in some transient and
intermittent states, especially in the early stage, but not per-
sistently. The bottom inset shows the time interval in which
the system does not lie in the trendsetters’ or the arbi-
trageurs’ attractors, showing the fluctuations in short time
scales embodied in longer time scale fluctuations.

The case of �=1 is special. Since the price change is
linearly related to the global sum of actions A�t�, the price
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FIG. 6. The dependence on � of �a� the average wealth gain per
step, �b� the predictability, and �c� the volatility, for �=0.8 and K
=3. Simulations are performed with N=100, 300, 1000, 106 steps,
and 100 samples.
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trend in the long run is flat, consequential to the limit
limt�→inf�t�

t A�t���0 for finite maximum positions. Thus, the
condition ��1 is essential in reproducing the nonstationary
price trend commonly found in real financial markets.

The inset of Fig. 7�a� shows the corresponding distribu-
tion of price change, with the fat tail of the distribution obey-
ing a power law. For the leftmost curve, the exponent is
approximately −7.4, resembling the fat tail volatility distri-
bution in real financial markets �22�. The sharp drop at the
end of the tail is due to finite size limitations in simulations.
The other curve in the same figure shows that increasing �
causes the distribution of fluctuations to spread out, and the
fat tail decays more gently.

Figure 7�b� shows another example of the time series of
price in the irregular phase with K=3. As shown in the top
inset of Fig. 7�b�, the system switches from one quasiperi-
odic cycle to another, with an intermediate state in-between.
The trendsetters’ attractors appear in the transients, but not
persistently. The bottom inset of Fig. 7�b� shows that fluc-
tuations are present in multiple time scales. The price vola-
tility distribution in this region confirms a fat tail distribution
obeying a power law of exponent −3.8, as shown by the solid
line in the inset of Fig. 7�a�.

D. Positive and negative sumness

The average wealth of the agents in the space of � and �
is shown in Fig. 8. For K=3, the region of positive average
wealth dominates the space. This means that the market is a
positive-sum game for the agents. Much of the positive sum
region is covered by the region of the two attractors, as can
be seen from a comparison with Fig. 1. Besides that, there
exist regions of positive sums in the irregular phase. The
behavior of this region resembles the real financial market:
agents have a positive gain on average, while the dynamics is
not periodic. Furthermore, the volatility distribution of the
price follows a fat tail distribution with a power law expo-
nent −4 in the case of K=3, not very far from those observed
in real financial markets.

This positive sumness adds a new perspective to conven-
tional market models, such as the original minority game,
which has a negative sum in terms of the number of winners.
We remark that the positive sumness is a natural conse-
quence of the model where artificial means, such as capital
injection, are not employed to ensure profitability. In real
markets, this is essential to resolving the issue of attracting
agents to participate, were they given the option.

As shown in Fig. 8, the average wealth decreases when �
increases, since the market impact reduces the profit of the
transactions. Furthermore, the effect of the market impact on
price movements is hardly felt if the price sensitivity � is not
sufficiently high. Hence the region of negative sumness is
only found at high values of both � and �. This feature also
depends on the maximum position K. In general, the region
of negative sum shrinks with K, as shown in Fig. 9.

E. Role of the market makers

To understand the origin of the positive sumness, we note
that supply and demand in the market is not balanced. When
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FIG. 7. �a� An example of the time dependence of the price at
�=0.8, m=3, s=2, �=0.7, K=1, and N=1000. Inset: The volatility
distribution of price with N=1000, �=0.8 and m=3, �K ,��
= �1,0.3� �dash-dotted line�, and �K ,��= �3,0.7� �dotted line�. Solid
line: N=10 000, m=6, s=2, �=0.5, and K=3. �b� Another example
of the time dependence of price at K=3, other parameters the same
as in �a�.

FIG. 8. The average wealth gain per step of the agents after
equilibration as a function of � and � for m=3, s=2, K=3, N
=1000, 106 steps with 400 samples. Each contour represents an
increment of 2. The shaded region corresponds to the region of
negative average wealth. The direction of the arrow indicates the
direction of increasing wealth gain.
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there are more buyers than sellers, we implicitly assume
someone is willing to provide the extra stocks for the buyers.
Likewise, when there are more sellers than buyers, we im-
plicitly assume someone is willing to absorb the extra stocks
from the sellers. This role of clearing the extra supply and
demand at every time step is played by the market makers.
At every time step, the market makers take actions opposite
to the collective actions of the agents. It results in an exactly
zero-sum game if we sum up the wealth increments of all the
agents and the market makers. Although the overall wealth is
zero, the phase diagram in Fig. 1 actually shows the wealth
shifted from the market maker to the players, which contri-
bute to the positive sumness of the players. It serves as a
main allure for individual players to participate in the mar-
ket. However, the positive sumness of the players implies the
negative sumness of the market makers, and the issue of
voluntary participation shifts to why the market makers have
incentives to participate in the market. Hence, there should
be additional mechanisms bringing positive gain to both
players and the market makers. Before we address this issue
in the next section, we consider the case of markets without
the market makers.

F. Markets without market makers

To model markets without market makers, we balance the
supply and demand at every time step by randomly drawing
agents from the majority side to match the minority side,
whereas the excess demand before matching is still used in
the determination of price change. Those who are not fortu-
nate enough to carry out their decisions are forced to reset
their actions to zero for the time being. As a result, the num-
ber of actual buyers and sellers will be equal at every step.
Among the agents, the total number of long positions is al-
ways equal to the total number of short positions, leading to
a zero-sum game among the agents.

The price trend in this model is very monotonic. This can
be attributed to the extra buyers �sellers� whose decisions are
rejected by the market. While their decisions are frustrated,
their bids nevertheless drive the price up �down�, leading to a
signal of rising �dropping� price at the next step. With their
frustrated decisions, they repeat their decisions and buy �sell�
again. The signal of rising �dropping� price continues, and
eventually all agents making the opposite decision are ex-
hausted. Driven by this extra demand or supply, the price
goes either up or down continuously, but there are no trans-
actions. This behavior resembles the “stubborn majority” in
the $-game �5� except that there are no market makers to be
arbitraged in the present case. The scenario is familiar in the
real estate market of Tokyo in the early nineties or Hong
Kong in the late nineties, in which real estate prices are
driven by wild speculations to an unaffordable level. Alter-
natively, a continuously dropping market with no transac-
tions is similar to the real estate market after the burst of the
bubble.

While our model is successful in reproducing these real-
istic features, it has not included mechanisms that terminate
the indefinitely rising or dropping trends. This constitutes a
separate issue beyond the scope of this paper.

IV. PROFIT OF THE MARKET MAKERS

In the real market, the market makers should have a posi-
tive gain in return for balancing the supply and demand. This
positive gain encourages them to maintain their service in the
market. It was proposed that the market makers may lower
the risk of being arbitraged by the players through adding
their inventory to the excess demand in the determination of
price �5�. However, we found that this method cannot gener-
ate profit for the market maker in the present model. Hence,
we consider the alternative proposal that the market makers
impose a bid-ask spread during their transactions with the
players. That is, the transaction prices at time t are
PT�t��S�t� for the buying and selling agents, respectively,
where 2S�t� is the bid-ask spread at time t. Obviously, im-
posing the spread makes it possible for the market maker to
gain a profit from the transactions. However, to ensure that
both the agents and the market makers have incentives to
participate, the bid-ask spread must be determined in such a
way that the wealth of both the agents and the market makers
are stable in time. Here, we consider three ways of determin-
ing the spread and compare their effectiveness with respect
to this objective.

�1� Fixed bid-ask spread—Figure 10�a� shows the average
wealth per agent for different fixed values of S�t�=S. Since
the total wealth of the agents and the market makers sum up
to zero, a positive wealth of the agents implies a negative
wealth of the market makers, and vice versa. We can see that
the wealth of the agents decreases with the spread. When the
spread is sufficiently large, the wealth of the agents becomes
negative at the end of the monitoring period, implying that
the market makers are getting a profit. However, in the
framework of fixed transaction costs, there is only one opti-
mal transaction cost which yields a zero rate of wealth gain
of the agents asymptotically �such as that around 0.4 in Fig.

FIG. 9. The regions of positive and negative sumness in the
space of � and � for m=3, s=2. Simulations are performed with
N=1000, 105 steps with 400 samples.
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10�a��, and it is difficult for the market to know this optimal
cost a priori. Even for this optimal cost, the approach to the
asymptotic is too slow. Consequently, a fixed bid-ask spread
cannot ensure a stable balance of wealth between the agents
and the market makers.

�2� Fixed transaction rate—For the market makers to
maintain a profit in the long run, we consider a fixed trans-
action rate R given by S�t�=R � PT�. As shown in Fig. 10�b�,
the rate of change of the average wealth of the agents de-
creases with time. This is due to the increasing magnitude of
the price with time, so that the spread collected by the mar-
ket makers increases with time. Hence, for a sufficiently high
transaction rate �such as 0.3% in Fig. 10�b��, the market
makers gain a profit at the end of the monitoring period
shown in Fig. 10�b�. Even for a modest transaction rate �such
as 0.1% in Fig. 10�b��, it is anticipated that the agents will
eventually lose to the market makers. For a low transaction
rate �such as 0.05% in Fig. 10�b��, we are not certain whether
the average wealth of the agents will continue to increase,
eventually saturate, or finally decrease beyond the monitor-
ing period. In any case, the time it takes to reach a steady
balance of wealth between the agents and the market makers,

if it exists at all, is apparently prohibitively long.
�3� Adaptive transaction rate—Since the above two meth-

ods cannot ensure a stable balance of wealth between the
agents and the market makers, we introduce an adaptive
transaction rate as follows. For a bid-ask spread given by
S�t�=R�t� � PT�t��, suppose the market makers decide the
transaction rate R�t� so as to attain a total target wealth of
Wtarget�t� at time t. Since their total wealth at time t is
−�iwi�t�, they would increase �decrease� R�t� if Wtarget�t� is
greater �less� than −�iwi�t�. Hence, we propose an adaptive
transaction rate updated according to

R�t + 1� = max�R�t� +


N�Wtarget + �
i

wi�t��,0� , �11�

where  is the learning rate, dependent on how soon the
market makers would like to reach their target wealth. Here,
we consider the case that the target wealth approaches zero.
This is the scenario in which there is a fierce competition
among the market makers. Results in Fig. 10�c� show that
the average wealth of the agents �and hence that of the mar-
ket makers� converges to a steady value after the transients
die out, the duration of the transient period decreasing with
the learning rate. Figure 11 shows the sample-averaged trans-
action rate, indicating that it is necessary to impose a high
transaction rate in the transient period, before R�t� ap-
proaches a universal trend effectively independent of the
learning rate. This confirms the previous result that it is not
possible to maintain a stable balance of wealth between the
agents and the market makers using a fixed transaction rate.

V. NEW PLAYERS IN AN EVOLVING MARKET

So far, we have found the existence of positive sumness in
the space of price sensitivity and market impact, and that an
adaptive transaction rate can ensure a stable balance of
wealth between the agents and the market makers. However,
the model is still a zero-sum game, and one cannot keep both
the agents and the market makers happy at the same time. To
ensure participation incentives of both groups, we consider
in this section open markets, in which underperforming
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FIG. 10. The time dependence of the average wealth of the
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agents leave the market. They are replaced by new players
who bring their wealth into the market. Hence, for every
replacement of an agent, the average growth of wealth of the
entire market is equal to the difference between the average
initial wealth of a new player, minus the average final wealth
of an exiting agent.

One worry concerning the issue of participation incen-
tives is that when the new players enter the market, the old
players have already adapted their strategies to trade in the
market, and the new players have disadvantages in their ef-
fort to profit from the market. If the new players merely play
the role of supplying wealth to the market, without them-
selves any hope to profit from their participation, then the
new players will not have incentives to participate in the
long run.

Here, we consider the following model of an evolving
market. At t=0, N agents start their trading activities with
their initial wealth set to zero. At every Tev time step, the
agent with the least wealth will leave the market. She is
replaced by a new agent with zero initial wealth and a new
set of randomly chosen strategies.

To consider the extent to which the survival probability of
the new players is enhanced, we monitor the survival prob-
ability at time T of the agents entering the market at time t,
and compare it with the survival probability of random evo-
lution, which is given by pran�0�= �1−1 /N�T/Tev and pran�t�

= �1−1 /N��T−t�/Tev /N for t�0. In Fig. 12�a�, we observe that
the agents entering the market at an early stage of the game
have a higher survival probability than random evolution.
However, for fast evolution �low values of Tev�, the most
recently entering agents have a much lower survival prob-
ability than random evolution. Furthermore, Fig. 13 shows
that the survival probability of the old players is higher than
that of random evolution for low values of Tev. This shows
that the enhanced survival probability of the early agents is
not the consequence of gaining wealth from the old players,
but rather taking advantage of the recent entering agents.
This implies that the late corners will have little incentive to
participate in a fast evolving market.

On the other hand, for a slowly evolving market, as
shown in Fig. 12�b�, we see that the survival probability of
the new agents is higher than that of random evolution for
most of the entering time of the new agents. This shows that
the new agents have learned to play as well as, or even better
than, the old players.

Figure 13 shows the survival probability of the old play-
ers as a function Tev. The survival probability is higher than
that of random evolution for low values of Tev, but is roughly
the same for high values of Tev. This again shows that slow
evolution provides a fairer environment for the survival of
the new players.

We have also tested the case that the new agents enter the
market with initial wealth equal to the average wealth of the
agents at the moment of entry. This places the new agents on
a much more equal footing with the old players. Conse-
quently, the survival probability of the new agents becomes
effectively the same as that for random evolution, even at the
parameters of Fig. 12�a�. This provides another support to
the assertion that it is possible for the new agents to have
participation incentives.

VI. TESTING WITH HANG SENG INDEX

To test whether the wealth-based payoff scheme intro-
duced by us is applicable to real market data, we replace the
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self-generated price in the model by real Hang Seng Index
�HSI� data. For convenience, we call this wealth-based pay-
off scheme the wealth game. All the transaction price and
history of price change for strategy predictions are made
with respect to the real data. The data series spans 5045
trading days, from 2 January 1987 to 17 May 2007.

A. Tests with fixed maximum position

We first consider the case that agents start with zero
wealth and have fixed maximum positions K. During this
period, the agent trades in the market a fictitious stock whose
unit price equals the Hang Seng Index. She makes her buy,
sell, and hold decisions using the strategies she holds, updat-
ing the wealth-based payoffs of her strategies. For compari-
son, we also consider the update of payoffs using the minor-
ity game, the $-game, and the majority game. The payoffs in
these other schemes are calculated with the excess demand
being replaced by the price change P�t+1�− P�t�. A sum-
mary for the schemes is given in Table I.

Figure 14 shows the wealth distribution of the four payoff
schemes at the end of the trading period. The wealth distri-
bution for the wealth game is distinct from the other schemes
in that it has a prominent peak strongly biased towards the
direction of high wealth. In contrast, the minority game has a

broad peak biased towards the direction of low wealth. The
average wealth of the payoff schemes is summarized in Table
II. This shows that the wealth game produces agents with the
best average performance.

On the other hand, Table II also shows that the wealth of
the richest agent produced by the wealth game is less than
those of the other payoff schemes, and much less than that of
the minority game, in particular. This indicates that while the
wealth game produces good agents on average, it does not
encourage the exploration of risky strategies. On the other
hand, the minority-seeking nature of the minority game en-
ables the agents to explore unconventional strategies giving
rise to unusual success, but this is achieved through sacrifi-
cing the performance averaged over the rest of the agents.

B. Tests with wealth-based maximum position

To make the model even more realistic, we consider the
case in which the agents have different maximum allowed
positions Ki�t� which evolve with time in accordance to their
wealth and the current price, such that Ki�t� equals the inte-
ger part of max�wi�t� / P�t� ,0�. The wealth of every agent is
initialized with the same amount of cash wealth wi�0�
=5P�0� to encourage their initial participation in the trading
of HSI, that is, their allowed maximum positions are Ki�0�
=5 initially. Compared with the previous case of fixed maxi-
mum position, one new feature in this test is that as time
goes on, the wealth of some agents decreases below the cur-
rent price and they are not able to open a new position.

Figure 15 shows the HSI, the wealth of the three best
players, five typical players, and the worst player among
10 000 players, rescaled by their respective initial values. We
make the following observations. �1� It is possible to have
agents whose wealth grows faster than the price inflation of
HSI. �2� Before the East Asian financial crisis in 1997, the
best three players adapt to the booming environment by
holding large numbers of stocks �positive positions�, capital-
izing on the rising trend of the price. However, they are not
prepared for the crash. Thus, they all suffer a great loss in the
crash as they are still holding high, long positions immedi-
ately before the crash. �3� For the typical players, many of
them are already lagging behind the price inflation, and thus
are not rich enough to hold large numbers of stocks. As a
result, they suffer less than the best players from the crash.
�4� Some players have their wealth eventually falling below
the price. This limits them from opening new positions. Their
wealth becomes frozen.

TABLE I. The payoff change of strategy � after transactions at
time t for the wealth game, the minority game, the $-game, and the
majority game. Here a��t� is the decision made by strategy � at
time t.

Wealth change of strategy �
after transactions at time t

Wealth game k��t−1��PT�t�− PT�t−1��
=�t�

t−1a��t���PT�t�− PT�t−1��
Minority game −a��t��P�t+1�− P�t��
$-game a��t−1��P�t+1�− P�t��
Majority game a��t��P�t+1�− P�t��
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FIG. 14. The final wealth distribution for agents in the wealth
game, the minority game, the $-game, and the majority game, in
multiples of the HSI closing price of 17 May 2007. Parameters:
m=2, s=2, K=3, �=0.5, 10 000 agents for each payoff scheme.

TABLE II. The average wealth and the wealth of the richest
agent in the wealth game, the minority game, the $-game, and the
majority game, in multiples of the HSI closing price of 17 May
2007.

Payoff schemes
Wealth
game

Minority
game $-game

Majority
game

Average wealth 0.6 −0.12 0.03 0.08

Best wealth 3.31 4.51 3.35 3.38
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Figure 16 shows the distribution of final wealth of the
agents after trading over 20 years of HSI in this experiment.
About 10% of the agents are gaining agents, that is, with
their wealth growing faster than the price inflation of HSI, as
indicated by the tail of the distribution to the right of the
vertical line in Fig. 16. The wealth of other agents grows
slower than the HSI. Peaks near integer values are observed,
corresponding to agents whose wealth is clustered around
their maximum allowed positions.

The wealth game is compared with other conventional
payoff schemes. A control experiment is also done by agents
randomly making decisions. Table III shows that among the
four payoff schemes, the wealth game has the best average
performance, as evident from the average wealth and the
fraction of gaining agents. As a benchmark, there are 0.03%
of gaining agents in the case of random choices.

Another advantage of the wealth game can be seen by
relaxing the constraint that the strategies held by the agents

must have at least one buy and one sell decision. This con-
straint prevents an agent from getting trapped in a long
�short� position in a bearish �bullish� market, and hence
greatly reduces bankruptcy, that is, negative wealth, as illus-
trated in Table III by the worst wealth being positive and the
bankruptcy rate being 0.

However, removing this constraint significantly increases
the bankruptcy rate. This is especially significant for the mi-
nority game, where the bankruptcy rate is highest among the
four payoff schemes, and the poorest agents have largely
negative wealth, as shown in the inset of Fig. 16. On the
other hand, the same figure shows that the bankruptcy rate
for the wealth game is much lower, and the poorest agents
only have a marginally negative wealth. Indeed, the bank-
ruptcy rates are 0.7%, 4.7%, 2.6%, and 3.0% for the wealth,
minority, $-, and majority games, respectively. This advan-
tage of the significantly reduced bankruptcy rate is probably
due to the faithfulness of the wealth game payoff in reflect-
ing the wealth of an agent.

On the other hand, the minority game is able to produce a
small number of agents with best performances, as shown in
Table III. This indicates that the minority game rewards more
risky strategies that can result in a small number of success-
ful strategies, a conclusion consistent with the results in the
case of fixed maximum position.

At first sight, it does not appear surprising that the agents
in the wealth game perform better than other players, since
their wealth is updated with the rule of this model. However,
the following two tests provide further insights about the
behaviors of the different payoff schemes.

First, we test the payoff schemes on the HSI data for a
trendy period. We consider the period of recovery from
SARS, starting from the bottom on April 25, 2003 to May
17, 2007. The price trend is rather monotonic, making it easy
for strategies to adopt. In this case, the wealth game has the
best average wealth, and the minority game the worst.

Next, we consider a rugged period from July 15, 1996 to
March 21, 2001 �one year before and after the peaks at July
15, 1997 and March 21, 2000, respectively�, covering both
the East Asian financial crisis and the dot-com bubble. Dur-
ing this period, the general trend of the HSI consists of two
rises and two falls, making it rather difficult for the strategies
to adopt. In this case, the minority game performs much
better than the other payoff schemes, and the wealth game
has the poorest average wealth.

In summary, the wealth game performs better than the
minority game in trendy periods of HSI, but worse in rugged
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FIG. 15. �Color online� The HSI and the wealth of the three best
players, five typical players, and the worst player in the wealth
game, all in multiples of the corresponding values on 2 January
1987. Parameters: m=3, s=2, �=0.5, and N=10 000.
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FIG. 16. The distribution of wealth, in multiples of the HSI
closing price of 17 May 2007, among the 10 000 players in the
wealth game with m=3, s=2, �=0.5. Inset: The distribution of
negative wealth, in multiples of the HSI closing price of 17 May
2007, among the 10 000 players in the wealth game, the minority
game, the $-game, and the majority game, with m=3, s=2, �
=0.5. The restriction of having at least one buy and one sell deci-
sion per strategy is relaxed.

TABLE III. The performance of the agents in the wealth game,
the minority game, the $-game and the majority game, in multiples
of the HSI closing price of 17 May 2007.

Payoff schemes
Wealth
game

Minority
game $-game

Majority
game

Average wealth 1.85 1.47 1.40 1.31

% Gaining agents 10.4 8.68 6.40 5.45

Worst wealth 0.13 0.13 0.13 0.12

% Bankruptcy 0 0 0 0

Best wealth 11.16 17.15 11.13 10.88
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periods. This is probably due to the use of positions k��t
+1� rather than the action a��t� in the calculation of the pay-
off of strategy �. This gives a stronger history dependence of
the wealth game, which favors its perfomance in trendy mar-
kets. However, this is probably the same reason that makes it
face more difficulties in periods with many trend reversals.
Overall, in a time scale as long as 20 years, the price time
series of most financial markets have rising trends such as
the one in HSI, so that payoff schemes with strong history
dependence still have overall advantages.

VII. CONCLUSION

We have considered a family of models of the financial
market in which all parties involved, namely, the agents, the
market makers, and the new players, find incentives to par-
ticipate. This represents a departure from the conventional
minority games, whose focus does not reflect the positive
sumness of financial markets. The prerequisite of this depar-
ture is the direct usage of wealth as both the payoff for evalu-
ating strategies and a measure of the success of individual
agents, the latter allowing for the possibility of positive sum-
ness of the market.

The wealth-based payoff scheme is successful in repro-
ducing collective behaviors of the agents resembling those in
real markets. Specifically, the price sensitivity � and the mar-
ket impact � are introduced to fine tune, respectively, the
transduction from the excess demand to the price dynamics,
and the reaction of collective decisions on individuals. In the
phase space of � and �, several behaviors resembling those
in real financial markets emerge. In the arbitrageurs’ attrac-
tor, alternate buy and sell cycles emerge when the market
impact is low, analogous to the arbitraging activities of privi-
leged traders in real financial markets.

In the trendsetters’ attractor, quasiperiodic cycles of price
rises and falls are created by the trendsetters and followed by
the fickle agents. This coordinated behavior has a direct cor-
respondence to the roles played by the different kinds of
agents in the real market. It demonstrates the importance of
using virtual wealth to measure the success of strategies.
Since the virtual wealth depends on the history of decisions,
it embeds a longer memory in strategy selection, thus induc-
ing a greater sophistication in the collective behavior such as
that exhibited in the trendsetters’ attractor.

The phases of the arbitrageurs’ and trendsetters’ attractors
are bounded by phase transition lines typical of statistical
physics. Their quasiperiodicity demonstrates the robustness
of the players’ coordinated behavior. On the other hand,
while they reproduce agent behaviors plausible in real mar-
kets, it seems that their rigid periodicities cannot be repro-
duced in real markets. It will be interesting to study whether
dynamical behaviors of the same nature can be generated by
models with more heterogeneity, say, in the memory sizes
and maximum positions of the agents.

The phase diagram also consists of the irregular phase, in
which the time series of the price consists of intermittent
quasiperiodic states connected by abrupt changes. Simple or
linear price trends are not observed, making the system dy-
namically interesting. Fluctuations in the long time scales

embody fluctuations in shorter time scales. This is the regime
with price time series resembling real markets most.

The phase diagram is rather robust to variations of the
model. For example, in the grand-canonical version in which
agents with poor strategies are allowed to refrain from play-
ing, we found that the trendsetters’ attractor is still sustained
by the presence of fickle agents. We have checked that the
behavior of the other phases are qualitatively the same in the
grand-canonical game.

An interesting question is what parameter range of � and
� should correspond to the real market. The attraction of
agent-based models is their ability to relate an adjustable
microscopic mechanism with macroscopic market behavior,
thereby giving rise to self-organizing mechanisms for market
evolution. Self-organization of markets has been proposed
for their states of criticality �7� and efficiency �6�. Here, we
propose a possible mechanism for the market to self-organize
to the irregular phase resembling the real market.

Suppose the market is in the trendsetters’ phase with a
low value of �. Since the market is positively summed in this
phase, the agents are encouraged to act boldly in bidding and
asking to maximize their expected wealth gain. This leads to
an increase in the price sensitivity. The trend will continue
until the market behavior enters the irregular phase. Near the
line of zero sum in the irregular phase, the reduced wealth
gain of the agents discourages them from increasing their
boldness in their bids and asks, and the value of � reaches a
steady value. The mechanism is similar to the self-
organization of the investment level to an efficient state in
�6�.

The self-organization of the market impact � might be
related to the activities of the arbitrageurs. Suppose the mar-
ket is in the arbitrageurs’ phase with a low value of �. The
profitable arbitraging opportunities attract more arbitrageurs
to enter the market. Consequently, each individual arbi-
trageur is no longer as privileged as before, since their deci-
sions will exert market impact on each other. This results in
an increase in the market impact parameter. The trend will
continue until the market behavior enters the irregular phase.
In practice, individual agents experience different market im-
pacts due to their different reaction times and transaction
volumes. Models with an individualized market impact
should be studied in the future to further clarify this issue of
self-organization.

Returning to the issue of participation incentives, the
phase space has a large region of positive sumness. This
positive sumness provides incentives for the agents to play in
the market. In the absence of new players joining the market,
their wealth comes from the market makers who play the
role of balancing the supply and demand of the market.

The participation incentives of the market makers come
from the bid-ask spread during their transactions with the
players. We found that both the fixed transaction cost and
fixed transaction rate cannot ensure a stable balance of
wealth between the agents and the market makers. Rather, an
adaptive transaction rate avoids this problem.

The picture of participation incentives is completed by
considering open markets, in which underperforming agents
are replaced by new agents. This converts the zero-sum game
of the agents and market makers to one with a positive sum.
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The participation incentive of the new players may arise
from their chances to learn the strategies of the more suc-
cessful players. We found that these agents have survival
probabilities matching those of random evolution, provided
that the evolution is sufficiently slow.

Finally, we have tested the wealth-based payoff scheme
by playing the wealth game on HSI data over 20 years, and
compared its performance with the minority game, the
$-game, and the majority game. We found that the wealth
game produces agents with much better average performance
than other games, and significantly reduces the bankruptcy
rate for agents holding poor strategies. This is probably due
to the faithfulness of the payoff scheme in reflecting the
wealth associated with a strategy. Further tests on other mar-
kets are needed to experiment the applicability of wealth-
based payoff schemes and will be reported elsewhere.

On the other hand, the minority game is able to produce a
small number of extremely rich agents, whose wealth is bet-
ter than the richest agents produced by other payoff schemes.
This indicates that while the wealth game produces good
agents on average, it does not reward the exploration of risky
strategies, whereas the minority-seeking nature of the minor-
ity game enables the agents to explore unconventional strat-
egies giving rise to unusual success, but this is achieved
through sacrificing the performance averaged over the rest of
the agents.

The strengths and weaknesses of the different payoff
schemes are also revealed in their performances in trendy
and rugged periods. The wealth game performs well when
history can provide a guide, but meets difficulties in markets
with many trend reversals.

These performance characteristics of the wealth-based
payoff scheme can be traced to the different ways virtual
scores are updated in the payoff schemes. Among the many
differences between the wealth game and the minority game,
the most essential one is that the position k��t−1� replaces
the action a��t� in the calculation of the virtual score in Table
I. In the wealth game, agents assess their gains by their po-
sitions rather than one-step decisions. Since the position of a
series of actions of a strategy is equal to its historical sum,
position-dependent assessment schemes embed a longer
memory scale in the decision making process of agents than
those in the minority game.

Interesting issues arising from this comparative study re-
main. First, wealth-based payoff schemes are able to explain
the behavior of good investors statistically, but since the ex-
tremely successful investors are produced by the minority
game rather than the wealth game, it is possible that the
behavior of the group of rich agents and the few extremely
rich agents have to be modeled differently, especially with
respect to the readiness to take risks. Second, it would be
interesting to formulate integrated payoff schemes, so that
the agents can both learn from history during trendy periods,
and be ready to explore risky but potentially successful strat-
egies during risky periods.
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